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Abstract

This document specifies tSPARQL, a trust-aware query language for
trust weighted RDF graphs. A trust weighted RDF graph is basically an
RDF graph where every triple is associated with a trust value. tSPARQL
is a trust-aware extension to SPARQL, a query language for RDF. This
document requires an understanding of the SPARQL query language and
its semantics.

tSPARQL extends SPARQL in the following two ways. First, it adapts
the SPARQL semantics to process the trust values associated with triples
in the queried RDF graphs during query evaluation; i.e., it associates the
solutions for graph patterns with trust values. Second, tSPARQL extends
the query language by novel concepts to utilize the trust values in queries;
i.e., it enables users to describe trust requirements and access the trust
values associated to the solutions.

This document is structered as follows. First, Section 1 motivates the
need for tSPARQL and gives an informal overview of its features. The
remainder defines the tSPARQL query language in detail. It presents
the tSPARQL approach for trust-aware processing of SPARQL queries
(Section 2); followed by the tSPARQL extensions that enable the new
tSPARQL features (Section 3). Finally, Section 4 concludes this docu-
ment.
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1 Introduction

Since its introduction the Resource Description Framework (RDF) [KC04] has
become a well established data model for information about resources. Nowa-
days, it is widely accepted as the format for data on the Web. During recent
years a large amount of data described by RDF has been published on the
Web. For instance, the Semantic Web search engine Swoogle [DFJ+04] in-
dexed about 2.3 million RDF documents in December 2007. The developers of
Sindice [TOD07], a lookup index for Semantic Web documents, even reported
more than 20 million documents in a recent blog post1. These news only in-
dicate the beginning; content providers such as the review and rating service
revyu.com2 or the social tagging service GroupMe3 publish their data in RDF,
social network sites such as LiveJournal4 provide FOAF5 files for their user
data, and legacy databases can easily be accessed as RDF datasources [BC06].
Another driving force for growing the ,,Web of data” is the Linking Open
Data project6 which creates and publishes RDF representations of various open
datasets such as the Wikipedia [ABL+07] and the UniProt7 proteine database.
Besides publishing these datasets the goal of the Linking Open Data project is
to interlink the resources described in them. In October 2007 the project offered
28 different datasets with about 3 million RDF links between them.

However, the openness of the Web which allows everyone to publish anything
creates new challenges to applications and information consumers. Questions
about reliability and trustworthiness are raised and become more important.
Doubtful sources may provide questionable or unjustified information; mali-
cious users may publish misleading or wrong information. Even some kind of
RDF spam may emerge, i.e. irrelevant, futile or manipulative statements. Such
unreliable data could dominate the result of queries, taint inferred data, af-
fect local knowledge bases, and have negative or misleading impact on software
agents. These issues must be addressed. Current approaches such as Eigen-
trust [KSGM03], PeerTrust [XL04], and Appleseed [ZL04] propose (parts of)
trust infrastructures based on a Web of Trust. Even if some of the proposals
consider the reliability of the data provided by members of the network the
majority focuses on the trustworthiness of the members.

What is missing for the Web of data is a uniform way to rate the trustwor-
thiness of the information on the Web and standardized mechanisms to access
and to use the ratings. To rate trustworthiness in the Web of data we propose a
trust model for RDF data that represents the trustworthiness of every triple by
a trust value. To specify the trust value associated with a triple we introduce a
trust function.

Definition 1.1 Let T be the set of all RDF triples. A trust function tvC for
RDF triples is a mapping

tvC : T → {tv | tv ∈ [-1, 1]} ∪ {∅}
1http://blog.sindice.com/?p=5
2http://revyu.com
3http://groupme.org
4http://www.livejournal.com
5http://www.foaf-project.org
6http://esw.w3.org/topic/SweoIG/TaskForces/CommunityProjects/LinkingOpenData
7http://beta.uniprot.org/
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which assigns every triple in T a subjective trust value that represents the
trustworthiness of the triple specific to an information consumer C. ¤

The trust value tvC(t) for the triple t defines the degree of belief of an in-
formation consumer C in the truth of the fact stated by triple t. The value 1
represents absolute belief; −1 represents absolute disbelief; 0 represents the lack
of belief/disbelief. Furthermore, we permit unknown trust values, denoted by
∅, for cases where it is impossible to determine the trustworthiness of triples.

We refer to an RDF graph where all triples that are associated with trust
values for a specific information consumer as a trust weighted RDF graph.

Definition 1.2 A trust weighted RDF graph G̃C for information consumer
C is a pair (G, tvC) consisting of an RDF graph G and a trust function tvC . ¤

Example 1.1 Figure 1 depicts a trust weighted RDF graph. The edges repre-
sent the predicates of triples. They are annotated with the predicate identifier as
usual [KC04] and with an additional label for the trust value of the correspond-
ing triple. The sample graph consists of three triples. One of them asserts that
resource ex:Alice is a person and is associated with a trust value of 0.8. ¤

Figure 1: A trust weighted RDF graph

Users as well as software agents have to be able to utilize the trust values
in trust weighted RDF graph and base their decisions upon these values. They
have to be enabled to ask queries such as:

Q1 Return the title of all courses attended by Alice where I can highly trust
information on the attendance and the correct title.

Q2 Return the title of all courses attended by Alice where I cannot, at least
moderately, trust in the single fact she really attended.

Q3 Return the name of the lecturer who gives a specific course; additionally,
return the trustworthiness of is this information.

Q4 Return all courses attended by a student ordered by the trustworthiness
of is this information.

Q5 For all persons living in the same city as me, return their interests to-
gether with the trustworthiness of the fact they are interested in the topic
returned.

Q6 Return a list of all people with two different name properties where the
trustworthiness of both differ by at least 0.3.

These sample queries are of two different types regarding the way they access
trust values. Q1 and Q2 describe requirements regarding the trustworthiness
of query results or parts of them; i.e., they filter results with respect to the
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trust values of the solutions. In contrast, Q3 to Q6 use trust values in the
query. Fundamental to enable information consumers to ask queries such as
Q1 to Q6 is the possibility to embed declarative descriptions of trustworthiness
requirements into queries. Hence, we propose the trust-aware query language
tSPARQL. Based on our trust model tSPARQL is an extension to the query
language SPARQL [PS08] for RDF.

To access trust values tSPARQL contains the TRUST AS clause. Consider
the query in Figure 2 which asks for names of students and their courses. It
contains a TRUST AS clause with a new variable ?t. ?t allows access to the
trust value associated with the triples that match the pattern in line 7. Hence,
the query additionally asks for the trustworthiness of the fact that the student
really takes the respective course.

1 PREFIX ub : <http ://www. l eh i gh . edu / . . . / univ−bench . owl#>
2 PREFIX rd f : <http ://www.w3 . org /1999/02/22− rdf−syntax−ns#>
3 SELECT ?n ? c ? t
4 WHERE {
5 { ? s rd f : type ub : Student .
6 ? s ub : name ?n }
7 { ? s ub : takesCourse ? c .
8 TRUST AS ? t }
9 }

Figure 2: Example query with trust projection

The TRUST AS clause offers the following novel features: i) the new variable
may become part of the query result, ii) the variable may be used for sorting
the results, iii) it may be associated with parts of the query pattern, and two
variables that represent trust values of different query pattern parts can be
compared. Hence, TRUST AS enables users to express queries Q3 to Q6. Besides
accessing trust values a TRUST AS clause can even be used to express trust
requirements as in queries Q1 and Q2; in addition to the TRUST AS clause users
simply add a FILTER clause which restricts the new variable. However, for
convenience tSPARQL contains another new clause for these cases, namely the
ENSURE TRUST clause. Figure 3 depicts a query with an ENSURE TRUST clause.
This clause comprises a pair of numbers in brackets, where the first number
denotes a lower bound and the second number denotes an upper bound. Again,
the query asks for names of students and their courses; however, in this case
only those solutions become part of the result where we highly trust that the
student really takes the respective course.

1 PREFIX ub : <http ://www. l eh i gh . edu / . . . / univ−bench . owl#>
2 PREFIX rd f : <http ://www.w3 . org /1999/02/22− rdf−syntax−ns#>
3 SELECT ?n ? c
4 WHERE {
5 { ? s rd f : type ub : Student .
6 ? s ub : name ?n }
7 { ? s ub : takesCourse ? c .
8 ENSURE TRUST ( 0 . 9 , 1 . 0 ) }
9 }

Figure 3: Example query with ensure trust constraint
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To enable the extensions tSPARQL basically enhances SPARQL in two ways.
First, it extends the query language with the new clauses and defines operations
for the clauses. Second, tSPARQL extends the processing of queries to consider
trust values because trust values are currently not part of SPARQL.

2 Trust in SPARQL Query Processsing

The semantics of SPARQL [PS08] do not consider trust values. To implement
trust-aware query processing tSPARQL adapts parts of the semantics, especially
the corresponding concepts of query evaluation. In this section, we first take a
closer look at SPARQL query processing and query evaluation; we then present
our extensions.

The SPARQL specification gives an operational definition of the semantics of
SPARQL. In brief, the specification defines a grammar for the query language, a
translation from a parse tree to an abstract syntax tree (AST), a transformation
from an AST to an abstract query with an algebra expression, and an operation
to evaluate abstract queries based on algebra operators. The algebra is defined
to calculate query solutions and operate on them (e.g. merge solutions from
different parts of the query). Finally, a result form definition specifies how to
create the query result from the solutions.

To consider trust values during query processing and to enable algebra oper-
ators that access trust values tSPARQL must extend query evaluation. E.g., the
trust values have to become part of the solutions. Hence, tSPARQL redefines
the notion of solutions. Additionally, tSPARQL specifies how these solutions
are calulated and how the algebra operates on them. The following sections
address these issues.

2.1 Trust-aware Basic Graph Pattern Matching

This section defines the notion of solutions in the context of tSPARQL. It follows
the definitions of solution mapping and solutions for BGPs as defined in the
SPARQL specification. However, solutions in tSPARQL must contain a trust
value. Therefore, the basic idea is to associate solution mappings with trust
values. In the following we refer to them as trust weighted solution mappings.

Definition 2.1 A trust weighted solution mapping µ̃ is a pair (µ, t) con-
sisting of a solution mapping µ (as defined in [PS08, Section 12.1.6]) and a trust
value t with −1 ≤ t ≤ 1 or t = ∅. ¤

Every solution mapping that is a solution to a BGP represents one matching
subgraph; the trust value of this solution mapping represents the trustworthi-
ness of the subgraph. The trustworthiness of a subgraph is an aggregation of
the trustworthiness of its triples which is represented by trust values that are
specified by a trust function (cf. Definition 1.1). Hence, the trustworthiness of
the subgraph can be represented by a trust value that is calculated from the
trust values of its triple using a trust aggregation function.

Definition 2.2 A trust aggregation function ta for trust weighted RDF
graphs is a function that assigns an aggregated trust value ta

(
G̃C

)
from the set

{t | −1 ≤ t ≤ 1} ∪ {∅} to a trust weighted RDF graph G̃C . ¤
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Following the definition from the SPARQL specification, we define solutions
for a BGP over a trust weighted RDF graph.

Definition 2.3 Let b be a basic graph pattern; let G̃C = (G, tvC) be a trust
weighted RDF graph for information consumer C. A trust weighted solution
mapping (µ, t) is a solution for b in G̃C if there is a pattern instance mapping
P (as defined in [PS08, Section 12.3.1]) such that P (b) is a subgraph of G, µ
is the restriction of P to the query variables in b, and t is the aggregated trust
value

t = ta
(
P̃ (b)C

)

of the trust weighted RDF graph P̃ (b)C = (P (b), tvC) calculated by a trust
aggregation function ta. For each solution µ for b cardeΩ(µ̃) is the number of
distinct pattern instance mappings P = µ (σ) such that P (b) is a subgraph of
G. ¤

With the given definition of solution the result of BGP matching over a trust
weighted RDF graph is a multiset of trust weighted solution mappings; the
solution mapping of a trust weighted solution mapping can be part of different
pattern instance mappings that represent different matching subgraphs and the
trust value for some of them can be the same.

Notice, our definition does not prescribe a specific trust aggregation function.
Applications have the freedom to choose an aggregation function that fits their
use cases. Possible trust aggregation functions include

tamin

(
G, tvC

)
=

{
∅ if ∃ t ∈ G : tvC(t) = ∅
min{tvC(t)|t ∈ G} else

and

taavg

(
G, tvC

)
=

{
∅ if ∃ t ∈ G : tvC(t) = ∅

1
‖G‖

∑
t∈G tvC(t) else

Example 2.1 When we apply the BGP in Figure 4(a) to the sample trust
weighted RDF graph in Figure 1 we find two matching subgraphs resulting in
the two solution mappings shown in Figure 4(b). µ1 maps ?s to ex:Alice and
?n to the literal Alice; µ2 maps ?s to ex:Alice again and ?n to the string
Bob. To determine the trust values for both, µ1 and µ2, we choose tamin as our
application-specific trust aggregation function. This is a reasonable choice if we
assume the solution of a BGP is only as trustworthy as the least trusted triple
in the matching subgraph. The subgraph for µ1 consists of two triples with trust
values 0.8 and 0.9, respectively. Hence, our first solution is the trust weighted
solution mapping µ̃1 = (µ1, 0.8). For µ2 we have the two trust values 0.8 and
0.1; our second solution is µ̃2 = (µ2, 0.1). ¤

Notice, conceptually BGP matching is entirely independent from the applied
method to determine the trust values of the matching subgraphs. By not pre-
scribing a specific trust function tvC for the queried trust weighted RDF graph
we do not prescribe a method to determine the trust values. The clear separation
of the two tasks, determining trust values and BGP matching, is an advantage
of our approach. Nonetheless, in practice it may be beneficial to combine the
implementation of both tasks. For instance, if determining the trust values for
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?s rdf:type foaf:Person .
?s foaf:name ?n .

(a) (b)

Figure 4: A BGP (a) and its solutions (b) for the trust weighted RDF graph in
Figure 1

a set of triples from the same source is more efficient than considering every
triple on its own an algorithm for trust-aware BGP matching might be adjusted
accordingly to become more efficient. Another example is the caching of trust
values determined for the triples in a matching subgraph and the employment
of these caches in subsequent BGP matchings.

In order to operate on trust weighted solution mappings tSPARQL adjusts
the algebra operators from SPARQL. Some of the operators merge two solutions
and the SPARQL specification defines the merging of solution mappings. How-
ever, the adjusted operators additionally have to consider the trust values while
merging. The trust value of a merged solution mapping is an aggregation of
the trust values associated with the individual mappings that are being merged.
For this purpose tSPARQL introduces another type of aggregation functions,
called trust merge function.

Definition 2.4 A trust merge function tm for two trust weighted solution
mappings µ̃1 and µ̃2 is a commutative and associative function that determines
a merged trust value tm(µ̃1, µ̃2) from the set {t | −1 ≤ t ≤ 1} ∪ {∅}. ¤

Possible trust merge functions are

tmmin

(
µ̃1, µ̃2

)
=

{
∅ if t1 = ∅ ∨ t2 = ∅
min (t1, t2) else

and

tmavg

(
µ̃1, µ̃2

)
=

{
∅ if t1 = ∅ ∨ t2 = ∅
1
2 (t1 + t2) else

where µ̃i = (µi, ti).

2.2 Trust-aware Algebra for SPARQL

After defining trust weighted solution mappings this section explains how these
mappings are combined in more complex queries. Besides BGPs, the SPARQL
specification introduces other graph patterns. During query evaluation they
are represented by algebra operators which operate on multisets of solution
mappings. For the new clauses (cf. Section 1) tSPARQL needs new types of
operators. To enable these new operators to access the trust values in solutions
all algebra operators have to consider the trust values. Hence, tSPARQL re-
defines the conventional SPARQL algebra operators to operate on multisets of
trust weighted solution mappings.

For a precise redefinition of the algebra operators we introduce the following
symbols (following the corresponding symbols in [PS08]). With cardeΩ(µ̃) we
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denote the cardinality of the trust weighted solution mapping µ̃ in a multiset Ω̃
of trust weighted solution mappings; with cardeΨ(µ̃) we denote the cardinality
of the trust weighted solution mapping µ̃ in a sequence Ψ̃ of trust weighted
solution mappings.

tSPARQL redefines the join operator as follows.

Definition 2.5 Let Ω̃1 and Ω̃2 be multisets of trust weighted solution map-
pings. The result of a join operator is a multiset of trust weighted solution
mappings which is defined as

Join
(
Ω̃1, Ω̃2

)
=

{(
merge(µ1, µ2), tm (µ̃1, µ̃2)

) ∣∣ µ̃1 = (µ1, t1) ∈ Ω̃1 ∧
µ̃2 = (µ2, t2) ∈ Ω̃2 ∧
µ1 and µ2 are compatible

}

with

card
Join

(
fΩ1,fΩ2

)(µ̃) =
∑

fµ1∈fΩ1

fµ2∈fΩ2





cardfΩ1
(µ̃1) · cardfΩ2

(µ̃2) if µ̃ = (µ, t) with
t = tm (µ̃1, µ̃2) and
µ = merge(µ1, µ2)
where µ̃i = (µi, ti)

0 else

where merge is the merge operation for solution mappings [PS08, Section 12.3]
and tm is an application-specific trust merge function. ¤

Notice, the definition does not prescribe a specific trust merge function; thus
giving applications a choice. The following example illustrates trust-aware query
evaluation.

{
{ ?s rdf:type ub:Student ;

ub:name ?n }
{ ?s ub:takesCourse ?c }

}

(a) (b)

Figure 5: Group graph pattern (a) and the representing operator tree with
solutions (b)

Example 2.2 The group graph pattern in Figure 5(a) groups two BGPs that
ask for the names of students and their courses. Figure 5(b) depicts the cor-
responding algebra expression as an operator tree annotated with trust weighted
solution mappings that represent some sample solutions. Consider the two sam-
ple solution sets from both BGP matchings represented by the two tables near
the bottom of Figure 5(b). Joining the solutions from both multisets results in
the solutions represented by the upper table. The trust merge function applied is
tmmin, i.e. for every merged solution pair we select the lower trust value for the
resulting solution. This is reasonable if we assume a merged solution mapping
is only as trustworthy as the least trusted mapping used for merging. ¤
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Similiar to the join operator tSPARQL redefines all operators of the SPARQL
algebra. What follows is a list of the definitions.

Definition 2.6 Let Ω̃ be a multiset of trust weighted solution mappings; let
ex be an expression as defined in [PS08]. The result of a filter operator is a
multiset of trust weighted solution mappings which is defined as

Filter
(
ex, Ω̃

)
=

{
µ̃

∣∣ µ̃ = (µ, t) ∈ Ω̃∧ ex(µ) is an expression that has an

effective boolean value of true
}

with
cardFilter(ex,eΩ)(µ̃) = cardeΩ(µ̃) ¤

Definition 2.7 Let Ω̃1 and Ω̃2 be multisets of trust weighted solution map-
pings; let ex be an expression as defined in [PS08]. The result of a diff operator
is a multiset of trust weighted solution mappings which is defined as

Diff
(
Ω̃1, Ω̃2, ex

)
=

{
µ̃1

∣∣ µ̃1 = (µ1, t1) ∈ Ω̃1 ∧
for all µ̃2 = (µ2, t2) ∈ Ω̃2 holds:

µ1 andµ2 are not compatible
}
∪

{
µ̃1

∣∣ µ̃1 = (µ1, t1) ∈ Ω̃1 ∧
for all µ̃2 = (µ2, t2) ∈ Ω̃2 where µ1 andµ2 are compatible it holds:

ex
(
merge

(
µ1, µ2

))
has an effective boolean value of false

}

with
card

Diff(fΩ1,fΩ2,ex)(µ̃) = cardfΩ1
(µ̃)

where merge is the merge operation for solution mappings [PS08]. ¤

Definition 2.8 Let Ω̃1 and Ω̃2 be multisets of trust weighted solution map-
pings; let ex be an expression as defined in [PS08]. The result of a left join
operator is a multiset of trust weighted solution mappings which is defined as

LJoin
(
Ω̃1, Ω̃2, ex

)
= Filter

(
ex, Join

(
Ω̃1, Ω̃2

)) ∪Diff
(
Ω̃1, Ω̃2, ex

)

with

card
LJoin(fΩ1,fΩ2,ex)(µ̃) = card

Filter
“

ex,Join
(
fΩ1,fΩ2

)”(µ̃) + card
Diff(fΩ1,fΩ2,ex)(µ̃)

¤

Definition 2.9 Let Ω̃1 and Ω̃2 be multisets of trust weighted solution map-
pings. The result of a union operator is a multiset of trust weighted solution
mappings which is defined as

Union
(
Ω̃1, Ω̃2

)
= Ω̃1 ∪ Ω̃2

with
card

Union
(
fΩ1,fΩ2

)(µ̃) = cardfΩ1
(µ̃) + cardfΩ2

(µ̃) ¤
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Definition 2.10 Let Ω̃ be a multiset of trust weighted solution mappings. The
result of a to-list operator is a sequence of trust weighted solution mappings
which is defined as

ToList
(
Ω̃

)
=

[
µ̃

∣∣ µ̃ ∈ Ω̃
]

with
cardToList(eΩ)(µ̃) = cardeΩ(µ̃) ¤

Definition 2.11 Let Ψ̃ be a sequence of trust weighted solution mappings; let
cond be a condition as defined in [PS08]. The result of an order-by operator
is a sequence of trust weighted solution mappings which is defined as

OrderBy
(
Ψ̃, cond

)
=

[
µ̃

∣∣ µ̃ ∈ Ψ̃ ∧ the sequence satisfies cond
]

with
cardOrderBy(eΨ,cond)(µ̃) = cardeΨ(µ̃) ¤

Definition 2.12 Let Ψ̃ be a sequence of trust weighted solution mappings; let
PV be a set of query variables as defined in [PS08]. The result of a project
operator is a sequence of trust weighted solution mappings which is defined as

Project
(
Ψ̃, PV

)
=

[(
proj

(
µ, PV

)
, t

) ∣∣ µ̃ = (µ, t) ∈ Ψ̃
]

with
cardProject(eΨ,PV )(µ̃) = cardeΨ(µ̃)

where proj
(
µ, PV

)
is a mapping from a solution mapping µ to a solution map-

ping that is restricted to the variables in PV . The order of Project
(
Ψ̃, PV

)
must preserve any ordering given by OrderBy. ¤

Definition 2.13 Let Ψ̃ be a sequence of trust weighted solution mappings. The
result of a distinct operator is a sequence of trust weighted solution mappings
which is defined as

Distinct
(
Ψ̃

)
=

[
µ̃

∣∣ µ̃ ∈ Ψ̃
]

with
cardDistinct(eΨ)(µ̃) = 1

The order of Distinct
(
Ψ̃

)
must preserve any ordering given by OrderBy. ¤

Definition 2.14 Let Ψ̃ be a sequence of trust weighted solution mappings. The
result of a distinct operator is a sequence of trust weighted solution mappings
which is defined as

Reduced
(
Ψ̃

)
=

[
µ̃

∣∣ µ̃ ∈ Ψ̃
]

with
1 ≤ cardReduced(eΨ)(µ̃) ≤ cardeΨ(µ̃)

The order of Reduced
(
Ψ̃

)
must preserve any ordering given by OrderBy. ¤
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Definition 2.15 Let Ψ̃ be a sequence of trust weighted solution mappings; let
s and l be natural numbers. The result of a distinct operator is a sequence
of trust weighted solution mappings which is defined as

Slice
(
Ψ̃, s, l

)
=

[
µ̃

∣∣ µ̃ ∈ Ψ̃∧

the position of µ̃ in Ψ̃ is in the interval [s, s + l − 1]
]

The order of Slice
(
Ψ̃

)
must preserve any ordering given by OrderBy. ¤

3 SPARQL Extension for Trust Requirements

Section 1 gives a high-level overview of the use of trust values in tSPARQL
queries. This section provides a more formal description of the extension to
the SPARQL query language, i.e. the TRUST AS and ENSURE TRUST clauses. To
enable the new clauses tSPARQL

• extends the grammar of SPARQL,

• modifies the translation from an abstract syntax tree to an algebra ex-
pression,

• defines new algebra operators,

• and extends the evaluation semantics.

The remainder of this section covers these topics in the given order.

3.1 tSPARQL Grammar

On top of the SPARQL query language tSPARQL introduces two new clauses,
namely the TRUST AS and the ENSURE TRUST clause. Both new clauses can
occur at any position in a query where FILTER clauses are permitted. The
TRUST AS clause is denoted by the keywords TRUST AS which are followed by
a query variable. This variable must not be contained in any other pattern of
the query. The ENSURE TRUST clause is denoted by the keywords ENSURE TRUST
which is followed by two real numbers in brackets; the first number represents
the lower bound and the second number is the upper bound. An excerpt of the
extended SPARQL syntax is listed in Figure 6. The listing shows the relevant
symbols that have been adjusted and added for tSPARQL; the bold faced parts
represent the tSPARQL-specific additions.

3.2 Converting Graph Patterns

Based on the SPARQL grammar the SPARQL specification defines “the pro-
cess of converting graph patterns and solution modifiers in a SPARQL query
string into a SPARQL algebra expression” [PS08, Section 12.2]. To consider
the extended grammar for tSPARQL (cf. Section 3.1) the process must be
adjusted accordingly. The new clauses are part of the query graph pattern
(i.e. the WHERE clause). Hence, tSPARQL has to adjust the translation of
graph patterns to algebra expressions which is defined in a functional manner
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GroupGraphPattern ::= ’{’ TriplesBlock?
( ( GraphPatternNotTriples | Filter | EnTrust | PrTrust )

’.’? TriplesBlock?
)*

’}’
EnTrust ::= ’ENSURE’ ’TRUST’ ’(’ NumericLiteral ’,’ NumericLiteral ’)’

PrTrust ::= ’TRUST’ ’AS’ Var

Var ::= VAR1 | VAR2

NumericLiteral ::= NumericLiteralUnsigned | NumericLiteralPositive |
NumericLiteralNegative

NumericLiteralUnsigned ::= INTEGER | DECIMAL | DOUBLE

NumericLiteralPositive ::= INTEGER POSITIVE | DECIMAL POSITIVE |
DOUBLE POSITIVE

NumericLiteralNegative ::= INTEGER NEGATIVE | DECIMAL NEGATIVE |
DOUBLE NEGATIVE

Figure 6: Extensions for tSPARQL to the SPARQL syntax

by specifying a recursive Transform procedure [PS08, Section 12.2.1]. The input
to Transform is a graph pattern as defined by the grammar; the result is an al-
gebra expression. Since there are different types of graph patterns the definition
of Transform is subdivided. This document redefines the part of the definition
which considers the graph patterns of the syntax form of a GroupGraphPattern
because this is the only grammar symbol which has been extended for tSPARQL
(cf. Figure 6). Figure 7 shows the adjusted part of the definition; the bold faced
parts represent the tSPARQL-specific additions. The adjusted definition uses
the following two new algebra symbols:

PT(Pattern, V ariable) and ET(Pattern, Number,Number)

3.3 tSPARQL Algebra

To evaluate the new TRUST AS and ENSURE TRUST clauses tSPARQL needs
proper algebra operators. This section defines the project trust operator and
the ensure trust operator. As the redefined SPARQL algebra operators (cf. Sec-
tion 2.2) the two new operators operate on a multiset of trust weighted solution
mappings.

3.3.1 Project Trust Operator

The project trust operator evaluates the TRUST AS clause. For every mapping
the operator accesses the trust value, creates a new variable binding which maps
the specified variable to an RDF literal that represents the trust value, and adds
the new binding to the mapping.

Definition 3.1 Let Ω̃ be a multiset of trust weighted solution mappings; let
v be a query variable which is not bound in any µ̃ ∈ Ω̃; let L(t) be a function
that returns an RDF literal of type xsd:float with the value of t. The result
of a project trust operator is a multiset of trust weighted solution mappings
which is defined as

PT
(
v, Ω̃

)
=

{
(µ′, t)

∣∣ (µ, t) ∈ Ω̃ ∧ µ′ = µ ∪ {
(v, L(t))

}}

13



Let FS := ∅; /* the empty set */
Let G := the empty pattern; /* a basic graph pattern which is the empty set */
Let TV := ∅;
Let TC := ∅;
FOR EACH element E in the GroupGraphPattern

IF E is of the form FILTER(expr)
FS := FS ∪ {expr};

IF E is of the form TRUST AS v
TV := TV ∪ {v};

IF E is of the form ENSURE TRUST (l,u)
TC := TC ∪ {(l, u)};

IF E is of the form OPTIONAL{P}
THEN

Let A := Transform( P );
IF A is of the form Filter(F, A2)

G := LJoin( G, A2, F );
ELSE

G := LJoin( G, A, true );
IF E is any other form:

Let A := Transform( E );
G := Join(G, A);

IF TC 6= ∅
FOR EACH pair (l, u) in TC

G := ET(G, l, u);

IF V C 6= ∅
FOR EACH variable v in TV

G := PT(G, v);

IF FS 6= ∅
Let X := Conjunction of expressions in FS;
G := Filter(X, G);

The result is G.

Figure 7: Adjusted Transform procedure to consider the tSPARQL grammar

with
cardPT(v,eΩ)(µ̃) = cardeΩ(µ̃) ¤

The following example illustrates query evaluation with a project trust op-
erator.

Example 3.1 Figure 8(a) depicts the operator tree, annotated with sample so-
lutions, for the query pattern of the query in Figure 2. Compare the solutions
consumed and provided by the project trust operator. Every solution provided
by this operator contains an additional binding for variable ?t. This binding
maps ?t to a value that corresponds to the trust value that is associated with
the respective solution when the project trust operator is evaluated (e.g. 0.8 for
the first solution). Note, we use the trust merge function tmmin for the join
operation. Thus, the trust value of the first solution after the join is 0.6. How-
ever, the value bound to variable ?t has not changed; it is still 0.8. This can be

14



(a) (b)

Figure 8: Project trust operators in an operator tree with sample solutions

attributed to the limited scope of the trust projection and reflects the intention
of the TRUST AS clause and its position in the query.

To illustrate the role of the limited scope consider a slight variation of the
query in Figure 2 where the TRUST AS clause has been defined for the whole group
graph pattern (i.e. before the last closing brace in line 8). Figure 8(b) depicts
the corresponding operator tree annotated with sample solutions. Notice, the
solutions from BGP matching are the same as in Figure 8(a). Even so, the first
of the overall resulting solutions differ for ?t because the project trust operator is
applied after joining the solutions. Obviously, the position of a TRUST AS clause
in a query pattern matters. ¤

3.3.2 Ensure Trust Operator

The ensure trust operator evaluates the ENSURE TRUST clause. The operator
accepts only these solutions that have a trust value within the specified interval,
i.e., it eliminates any solutions with trust values lesser than the lower bound or
larger than the upper bound.

Definition 3.2 Let Ω̃ be a multiset of trust weighted solution mappings; let
l, u ∈ [−1, 1] be lower and upper bound values, respectively. The result of an
ensure trust operator is a multiset of trust weighted solution mappings which
is defined as

ET
(
l, u, Ω̃

)
=

{
(µ, t)

∣∣ (µ, t) ∈ Ω̃ ∧ l ≤ t ≤ u
}

with
cardET(l,u,eΩ)(µ̃) = cardeΩ(µ̃) ¤

The effect of an ensure trust operator on query evaluation is illustrated in
the following example.

Example 3.2 Figure 9(a) depicts the operator tree for the graph pattern of the
query in Figure 3. The tree is annotated with sample solutions. The ensure
trust operator discards the second solution from its input because it only permits

15



(a) (b)

Figure 9: Ensure trust operators in an operator tree with sample solutions

solutions associated with a trust value of at least 0.8. Hence, in contrast to Fig-
ure 5(b), the joined solutions contain only one trust weighted solution mapping.

Consider a slight variation of the query in Figure 3 where the ENSURE TRUST

clause has been defined for the whole group graph pattern (i.e. before the last
closing brace in line 8). Figure 9(b) depicts the corresponding operator tree
annotated with sample solutions. Notice, the solutions from BGP matching are
the same as before (cf. Figure 9(a)). Even so, the overall resulting solutions
differ because the ensure trust operator is applied after joining the solutions.
Obviously, the position of an ENSURE TRUST clause in a query pattern matters.
¤

3.4 tSPARQL Evaluation Semantics

To define the evaluation semantics of SPARQL queries the SPARQL specifica-
tion introduces an operation eval [PS08, Section 12.5]. The operands of eval
are the queried dataset and a graph pattern represented by an algebra expres-
sion; the result of the operation is a multiset of solution mappings. The defi-
nition of eval consists of one equation for each algebra symbol; the equations
specify the semantics to evaluate an algebra expression with the corresponding
algebra operators. For instance, the evaluation of joins is defined as

eval
(
D(G), Join(P1, P2)

)
= Join

(
eval

(
D(G), P1

)
, eval

(
D(G), P2

))

where D(G) denotes a dataset D with active graph G and P1 and P2 denote
the algebra expressions for the joined graph patterns.

The eval operation can be extended to define the evaluation semantics of
tSPARQL queries. In this case, eval returns a multiset of trust weighted solu-
tion mappings (instead of a multiset of solution mappings). Under this premise
the equations specified in [PS08, Section 12.5] hold with the redefined alge-
bra operators (cf. Section 2.2). However, further equations must be added for
the algebra symbols that represent the new clauses (i.e. for TRUST AS and
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ENSURE TRUST):

eval
(
D(G),PT(P, v)

)
= PT

(
v, eval

(
D(G), P

))

eval
(
D(G), ET(P, l, u)

)
= ET

(
l, u, eval

(
D(G), P

))

3.5 Optimization of tSPARQL Query Execution

A well-known heuristic to optimize query execution in relational database sys-
tems is selection push-down. Relational algebra expressions are being rewritten
to push down selection operators in the operator tree in order to reduce the size
of intermediary solutions and, thus, evaluate queries more efficiently. We adapt
this heuristic to tSPARQL. In this section we present rewrite rules to push down
trust constraints.

Enforcing trust constraints as early as possible may reduce query execution
costs by reducing the number of trustweighted solution mappings that have to
be processed. However, pre-drawing the evaluation of trust constraints is not
as simple as pushing down ensure trust operators: this transformation may
modify the semantics of the query unintentionally. In particular, pushing trust
constraints in join operations may result in algebra expressions not equivalent
to the original expressions. The soundness of rewrite rules that incorporate
join operators depends on the trust merge function employed for joins. In the
following we focus on rewrite rules that are only valid for the minimum trust
merge function tmmin.

In the following we say that two algebra expressions P1 and P2 are equivalent,
denoted by P1 ≡ P2, if eval

(
D(G), P1

)
= eval

(
D(G), P2

)
for every RDF dataset

D with active graph G.

Proposition 3.1 Let P1 and P2 be algebra expressions. For join operators that
employ tmmin the following equivalence of algebra expressions holds:

ET
(
Join

(
P1, P2

)
, l, u

)
≡ ET

(
Join

(
ET(P1, l, 1), ET(P2, l, 1)

)
, l, u

)
(1)

Find the proof of Proposition 3.1 in Appendix B (cf. Proof B.1). The proof
idea, however, is the following. For each result µ̃ = (µ, t) of the left term in (1),
t is in the interval [l, u]; let t1 and t2 be the trust value of the two join partners
for µ̃, respectively; since t is the minimum of t1 and t2 both, t1 and t2, must be
at least l.

Based on Proposition 3.1 we propose to rewrite algebra expressions by re-
placing terms of the form on the left hand side of (1) by the corresponding term
of the form on the right hand side of (1). Furthermore, for left-join operators
that employ tmmin we propose a similar rewrite rule based on the following
equivalence (for a proof see Proof B.2).

Proposition 3.2 Let P1 and P2 be algebra expressions. For left-join operators
that employ tmmin the following equivalence of algebra expressions holds:

ET
(
LJoin

(
P1, P2, ex

)
, l, u

)
≡ ET

(
LJoin

(
ET(P1, l, 1), P2, ex)

)
, l, u

)
(2)

To enable an even more extensive push-down of trust constraints we intro-
duce the following equivalences and propose to apply the corresponding rewrite
rules.
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Proposition 3.3 Let P be an algebra expressions. The following equivalence
of algebra expressions holds:

ET (Filter(ex, P ), l, u) ≡ Filter (ex,ET(P, l, u)) (3)

Proposition 3.4 Let P be an algebra expressions. The following equivalence
of algebra expressions holds:

ET (PT(P, v), l, u) ≡ PT (ET(P, l, u), v) (4)

Proposition 3.5 Let P be an algebra expressions. The following equivalence
of algebra expressions holds:

ET (ET(P, l2, u2), l1, u1) ≡ ET (P, max(l1, l2), min(u1, u2)) (5)

Proposition 3.6 Let P1 and P2 be algebra expressions. The following equiva-
lence of algebra expressions holds:

ET
(
Union(P1, P2), l, u

) ≡ Union
(
ET(P1, l, u),ET(P2, l, u)

)
(6)

Proposition 3.7 Let P1 and P2 be algebra expressions. The following equiva-
lence of algebra expressions holds:

ET
(
Diff(ex, P1, P2), l, u

) ≡ Diff
(
ex, ET(P1, l, u), P2)

)
(7)

Please notice, in contrast to (1) and (2), the equivalences (3) to (7) hold for
all trust merge functions; we prove them in Appendix B (cf. Proofs B.3 to B.7).

4 Conclusion

This document specifies the trust-aware query language tSPARQL which is an
extended variation of SPARQL. tSPARQL permits to query the trust values in
trust weighted RDF graphs as Examples 3.1 and 3.2 illustrate.
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A Changes

This appendix lists the changes between different versions of this document.

December 25, 2008
Revised the English in Section 4.

December 23, 2008
Revised the English in Sections 1 to 3.

December 19, 2008
Added the section about rewrite rules and an appendix with proofs for the
propositions employed by the rewrite rules.

March 5, 2008
First complete version of this specification.
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